Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- journal.pone.0096695
Submitted manuscript, 1.36 MB, PDF document
The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.
Original language | English |
---|---|
Article number | e96695 |
Journal | PLOS ONE |
Volume | 9 |
Issue number | 5 |
Pages (from-to) | 1-12 |
Number of pages | 13 |
ISSN | 1932-6203 |
DOIs | |
Publication status | Published - 2014 |
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 117551908