Increased T cell breadth and antibody response elicited in prime-boost regimen by viral vector encoded homologous SIV Gag/Env in outbred CD1 mice

Research output: Contribution to journalJournal articleResearchpeer-review

Background: A major obstacle for the development of HIV vaccines is the virus' worldwide sequence diversity. Nevertheless, the presence of T cell epitopes within conserved regions of the virus' structural Gag protein and conserved structures in the envelope (env) sequence raises the possibility that cross-reactive responses may be induced by vaccination. In this study, the aim was to investigate the importance of antigenic match on immunodominance and breadth of obtainable T cell responses. Methods: Outbred CD1 mice were immunized with either heterologous (SIVmac239 and HIV-1 clade B consensus) or homologous (SIVmac239) gag sequences using adenovirus (Ad5) and MVA vectors. Env (SIVmac239) was co-encoded in the vectors to study the induction of antibodies, which is a primary target of current HIV vaccine designs. All three vaccines were designed as virus-encoded virus-like particle vaccines. Antibody responses were analysed by ELISA, avidity ELISA, and neutralization assay. T cell responses were determined by intracellular cytokine staining of splenocytes. Results: The homologous Env/Gag prime-boost regimen induced higher Env binding antibodies, and induced stronger and broader Gag specific CD8+ T cell responses than the homologous Env/heterologous Gag prime-boost regimen. Homologous Env/heterologous Gag immunization resulted in selective boosting of Env specific CD8+ T cell responses and consequently a paradoxical decreased recognition of variant sequences including conserved elements of p24 Gag. Conclusions: These results contrast with related studies using Env or Gag as the sole antigen and suggest that prime-boost immunizations based on homologous SIVmac239 Gag inserts is an efficient component of genetic VLP vaccines-both for induction of potent antibody responses and cross-reactive CD8+ T cell responses.

Original languageEnglish
Article number343
JournalJournal of Translational Medicine
Number of pages10
Publication statusPublished - 20 Dec 2016

    Research areas

  • Adenoviral vectors, Human immunodeficiency virus, Vaccine, Virus-like particles

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 171582018