Fortessa 5

Flow Cytometry & Single Cell Analysis https://fcsc.ku.dk/

			Secondary Flourochrome (Bright Antigen)																									
		BUV 395	BUV496	BUV737	BV421	Pacific Blu B	/480	BV510	BV605	BV650	BV711 E	3V786 I	FITC	Alexa Fluc Bl	B515	PerCP-Cy ^s BB	8700 F	PE F	PE-CF594 PE	-Cy5	PE-Cy7 A	APC /	Alexa Fluc A	lexa Fluc A	PC-R700 /	APC-Cy7	APC-Fire	APC-eFlou
	BUV395	112	26%	36%	11%	20%	13%	10%	10%	15%	15%	13%	14%	13%	14%	18%	11%	11%	12%	31%	16%	16%	13%	18%	13%	12%	9%	15%
	BUV496	38%	97	31%	31%	16%	60%	51%	21%	24%	25%	22%	27%	15%	33%	30%	4%	22%	23%	42%	27%	24%	4%	30%	7%	29%	9%	29%
	BUV737	8%	29%	407	9%	11%	15%	31%	67%	62%	68%	65%	9%	10%	8%	57%	69%	21%	35%	76%	44%	53%	15%	28%	60%	26%	27%	27%
	BV421	27%	26%	25%	305		26%	29%	30%	45%	40%	64%	29%	36%	29%	32%	27%	23%	25%	31%	29%	25%	27%	31%	27%	29%	29%	29%
	Pacific Blu	26%	26%	25%		7	26%	29%	29%	44%	38%	62%	29%	36%	29%	32%	28%	23%	25%	31%	29%	25%	26%	31%	28%	29%	29%	29%
	BV480	30%	40%	28%	32%	23%	47		27%	29%	30%	30%	32%	19%	33%	35%	8%	24%	26%	42%	32%	27%	8%	33%	9%	33%	8%	33%
(r	BV510	30%	40%	28%	31%	22%		19	27%	29%	30%	30%	32%	18%	33%	35%	7%	24%	26%	42%	32%	27%	7%	33%	8%	33%	8%	33%
tige	BV605	17%	26%	14%	20%	0%	49%	49%	134	49%	19%	17%	20%	0%	18%	20%	12%	45%	53%	20%	18%	18%	0%	19%	0%	18%	0%	19%
An	BV650	6%	17%	13%	14%	11%	44%	50%	83%	94	17%	12%	9%	8%	7%	37%	47%	41%	51%	86%	9%	56%	9%	8%	17%	6%	13%	13%
ochrome (Dim	BV711	9%	14%	63%	11%	0%	31%	33%	77%	78%	46	31%	10%	0%	0%	67%	76%	53%	70%	92%	19%	54%	0%	22%	44%	10%	0%	0%
	BV786	9%	12%	73%	9%	9%	27%	39%	75%	76%	79%	294	13%	6%	8%	66%	78%	22%	39%	70%	76%	42%	10%	24%	53%	60%	56%	56%
	FITC	28%	31%	27%	24%	34%	32%	26%	23%	25%	26%	22%	17			30%	30%	24%	22%	42%	27%	23%	23%	29%	24%	28%	23%	25%
	Alexa Fluc	28%	31%	2/%	24%	34%	32%	26%	23%	25%	26%	22%		34		30%	30%	24%	22%	42%	27%	24%	23%	29%	24%	28%	23%	25%
nrc	BB515	28%	32%	2/%	24%	34%	33%	26%	23%	25%	26%	22%			88	30%	31%	24%	22%	43%	2/%	24%	23%	29%	24%	28%	23%	25%
Ë	PerCP-Cys	15%	1/%	/1%	13%	0%	16%	0%	50%	34%	39%	15%	21%	1%	3%	26	470	65%	79%	96%	31%	59%	5%	24%	26%	20%	0%	3%
(nar	BB/00	15%	1/%	/1%	13%	0%	16%	0%	50%	34%	39%	15%	21%	1%	4%	00/	1/3	65%	/9%	96%	31%	59%	6% 10%	24%	26%	20%	0%	4%
rin	PE CEEOA	9%	9%	12%	17%	13%	13%	13%	55%	13%	20%	6% 0%	15%	4%	12%	9%	10%	623	262	95%	23%	11%	10%	13%	9%	0%	4%	11%
	PE-CF594	11%	13%	25%	13%	18%	31%	35%	63%	33%	1/%	9%	16%	21%	12%	11% 52%	19%	88%	362	55%	33%	15%	25%	1/%	1/%	4%	19%	12%
	PE-Cy5	570 70/	D70	33%	5% E0/	0%	0%	0% 110/	C3%	42%	220/	3%	10%	0%	0% 110/	53% 67%	60%	E0%	79%	0.4%	10%	670/	Z3%	200/	20%	24%	0%	9% 700/
	ADC	20/	70/	200/	5/0 E0/	0%	120/	70/	250/	55%	170/	45/0	10%	0%	L1/0 E0/	/2/0	6.49/	260/	F 29/	07%	200/	195	4770	1.6%	C 90/	010/	/1/0	66%
	AFC Alova Eluc	370 20/	7/0	200/	570 E0/	0%	12/0	7/0	3370	59%	17%	14/0	7/0	0%	570 E0/	40/0	6.49/	260/0	52%	07%	20%	165	70	10%	60%	01/0	41/0	66%
		270 2%	11%	97%	3% 7%	7%	12/0	1/0	36%	58%	17 % 66%	30%	11%	7%	370 8%	62%	82%	1/1%	26%	97%	20%	86%	80%	10/0	00%	58%	41/0	52%
	APC-R700	8%	11%	92%	7%	7%	13%	13%	36%	58%	66%	30%	11%	7%	8%	63%	82%	13%	26%	92%	25%	86%	80%	15	185	59%	45%	52%
	ΔPC-Cv7	4%	4%	82%	2%	1%	7%	0%	7%	32%	50%	63%	4%	0%	1%	48%	72%	4%	7%	79%	72%	75%	64%	53%	81%	70	4370	3370
	APC-Fire	4%	4%	82%	2%	1%	7%	0%	7%	32%	50%	63%	4%	0%	1%	48%	72%	4%	7%	79%	72%	75%	64%	53%	81%	70	69	
	APC-eFlou	4%	4%	82%	2%	1%	7%	0%	7%	32%	50%	63%	4%	0%	1%	48%	72%	4%	7%	79%	72%	75%	64%	53%	81%		05	72

How the matrix was made

Mouse spleens was stained with individual anti-CD8 labeled antibodies with the indicated flourochrome and analyzed on the indicated instrument.

Each calculated value was arbitrarily assigned a color code according to the legend to show where the biggest spreading was situated.

How to use the resolution impact matrix

You find the color of interest on the top of the matrix, go down till you find the channel that you need to combine the color with and read the impact of spreading.

Consider this for panel design

When you are designing larger panels the task of making correct combinations becomes more difficult, but using the list below can help you:

- The lineage markers such as CD4, CD19 etc. should be found on the top of the matrix.
- Make sure the lineage marker has as many green cells as possible.
- For an important marker you should find the color on the left of the matrix.
- Make sure the marker has as many green cells as possible when you move across the matrix.
- Notice that spreading occurs between different laser lines.

Amount of spreading (%)

0-20
20-40
40-60
60-80
80-100
NA

Relative fluorochrome brightness (AU)

